Exploiting Event Log Data-Attributes in RNN Based Prediction

04/15/2019
by   Markku Hinkka, et al.
0

In predictive process analytics, current and historical process data in event logs are used to predict future. E.g., to predict the next activity or how long a process will still require to complete. Recurrent neural networks (RNN) and its subclasses have been demonstrated to be well suited for creating prediction models. Thus far, event attributes have not been fully utilized in these models. The biggest challenge in exploiting them in prediction models is the potentially large amount of event attributes and attribute values. We present a novel clustering technique which allows for trade-offs between prediction accuracy and the time needed for model training and prediction. As an additional finding, we also found that this clustering method combined with having raw event attribute values provides even better prediction accuracy at the cost of additional time required for training and prediction. We also built a highly configurable test framework that can be used to efficiently evaluate different prediction approaches and parameterizations.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset