Exploring the Boundaries of Semi-Supervised Facial Expression Recognition: Learning from In-Distribution, Out-of-Distribution, and Unconstrained Data

06/02/2023
by   Shuvendu Roy, et al.
0

Deep learning-based methods have been the key driving force behind much of the recent success of facial expression recognition (FER) systems. However, the need for large amounts of labelled data remains a challenge. Semi-supervised learning offers a way to overcome this limitation, allowing models to learn from a small amount of labelled data along with a large unlabelled dataset. While semi-supervised learning has shown promise in FER, most current methods from general computer vision literature have not been explored in the context of FER. In this work, we present a comprehensive study on 11 of the most recent semi-supervised methods, in the context of FER, namely Pi-model, Pseudo-label, Mean Teacher, VAT, UDA, MixMatch, ReMixMatch, FlexMatch, CoMatch, and CCSSL. Our investigation covers semi-supervised learning from in-distribution, out-of-distribution, unconstrained, and very small unlabelled data. Our evaluation includes five FER datasets plus one large face dataset for unconstrained learning. Our results demonstrate that FixMatch consistently achieves better performance on in-distribution unlabelled data, while ReMixMatch stands out among all methods for out-of-distribution, unconstrained, and scarce unlabelled data scenarios. Another significant observation is that semi-supervised learning produces a reasonable improvement over supervised learning, regardless of whether in-distribution, out-of-distribution, or unconstrained data is utilized as the unlabelled set. We also conduct sensitivity analyses on critical hyper-parameters for the two best methods of each setting.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro