Exploring the robustness of features and enhancement on speech recognition systems in highly-reverberant real environments

03/23/2018
by   José Novoa, et al.
0

This paper evaluates the robustness of a DNN-HMM-based speech recognition system in highly-reverberant real environments using the HRRE database. The performance of locally-normalized filter bank (LNFB) and Mel filter bank (MelFB) features in combination with Non-negative Matrix Factorization (NMF), Suppression of Slowly-varying components and the Falling edge (SSF) and Weighted Prediction Error (WPE) enhancement methods are discussed and evaluated. Two training conditions were considered: clean and reverberated (Reverb). With Reverb training the use of WPE and LNFB provides WERs that are 3 provides WERs that are 11 respectively. With clean training, which represents a significant mismatch between testing and training conditions, LNFB features clearly outperform MelFB features. The results show that different types of training, parametrization, and enhancement techniques may work better for a specific combination of speaker-microphone distance and reverberation time. This suggests that there could be some degree of complementarity between systems trained with different enhancement and parametrization methods.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset