Exploring Weight Balancing on Long-Tailed Recognition Problem

05/26/2023
by   Naoya Hasegawa, et al.
0

Recognition problems in long-tailed data, where the sample size per class is heavily skewed, have recently gained importance because the distribution of the sample size per class in a dataset is generally exponential unless the sample size is intentionally adjusted. Various approaches have been devised to address these problems. Recently, weight balancing, which combines well-known classical regularization techniques with two-stage training, has been proposed. Despite its simplicity, it is known for its high performance against existing methods devised in various ways. However, there is a lack of understanding as to why this approach is effective for long-tailed data. In this study, we analyze the method focusing on neural collapse and cone effect at each training stage and find that it can be decomposed into the increase in Fisher's discriminant ratio of the feature extractor caused by weight decay and cross entropy loss and implicit logit adjustment caused by weight decay and class-balanced loss. Our analysis shows that the training method can be further simplified by reducing the number of training stages to one while increasing accuracy.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset