Exponential convergence of Sobolev gradient descent for a class of nonlinear eigenproblems

12/04/2019
by   Ziyun Zhang, et al.
0

We propose to use the Łojasiewicz inequality as a general tool for analyzing the convergence rate of gradient descent on a Hilbert manifold, without resorting to the continuous gradient flow. Using this tool, we show that a Sobolev gradient descent method with adaptive inner product converges exponentially fast to the ground state for the Gross-Pitaevskii eigenproblem. This method can be extended to a class of general high-degree optimizations or nonlinear eigenproblems under certain conditions. We demonstrate this generalization by several examples, in particular a nonlinear Schrödinger eigenproblem with an extra high-order interaction term. Numerical experiments are presented for these problems.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset