Extension of Correspondence Analysis to multiway data-sets through High Order SVD: a geometric framework

11/08/2021
by   Olivier Coulaud, et al.
0

This paper presents an extension of Correspondence Analysis (CA) to tensors through High Order Singular Value Decomposition (HOSVD) from a geometric viewpoint. Correspondence analysis is a well-known tool, developed from principal component analysis, for studying contingency tables. Different algebraic extensions of CA to multi-way tables have been proposed over the years, nevertheless neglecting its geometric meaning. Relying on the Tucker model and the HOSVD, we propose a direct way to associate with each tensor mode a point cloud. We prove that the point clouds are related to each other. Specifically using the CA metrics we show that the barycentric relation is still true in the tensor framework. Finally two data sets are used to underline the advantages and the drawbacks of our strategy with respect to the classical matrix approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset