Extracting total Amb programs from proofs

04/29/2021
by   Ulrich Berger, et al.
0

We present a logical system CFP (Concurrent Fixed Point Logic) from whose proofs one can extract nondeterministic and concurrent programs that are provably total and correct with respect to the proven formula. CFP is an intuitionistic first-order logic with inductive and coinductive definitions extended by two propositional operators, A || B (restriction, a strengthening of the implication B -> A) and (A) (total concurrency). The target of the extraction is a lambda calculus with constructors and recursion extended by a constructor Amb (for McCarthy's amb) which is interpreted operationally as globally angelic choice. The correctness of extracted programs is proven via an intermediate domain-theoretic denotational semantics. We demonstrate the usefulness of our system by extracting a concurrent program that translates infinite Gray code into the signed digit representation. A noteworthy feature of our system is that the proof rules for restriction and concurrency involve variants of the classical law of excluded middle that would not be interpretable computationally without Amb.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset