Factoring Derivation Spaces via Intersection Types (Extended Version)

07/20/2019
by   Pablo Barenbaum, et al.
0

In typical non-idempotent intersection type systems, proof normalization is not confluent. In this paper we introduce a confluent non-idempotent intersection type system for the lambda-calculus. Typing derivations are presented using proof term syntax. The system enjoys good properties: subject reduction, strong normalization, and a very regular theory of residuals. A correspondence with the lambda-calculus is established by simulation theorems. The machinery of non-idempotent intersection types allows us to track the usage of resources required to obtain an answer. In particular, it induces a notion of garbage: a computation is garbage if it does not contribute to obtaining an answer. Using these notions, we show that the derivation space of a lambda-term may be factorized using a variant of the Grothendieck construction for semilattices. This means, in particular, that any derivation in the lambda-calculus can be uniquely written as a garbage-free prefix followed by garbage.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro