FADE: Enabling Large-Scale Federated Adversarial Training on Resource-Constrained Edge Devices
Adversarial Training (AT) has been proven to be an effective method of introducing strong adversarial robustness into deep neural networks. However, the high computational cost of AT prohibits the deployment of large-scale AT on resource-constrained edge devices, e.g., with limited computing power and small memory footprint, in Federated Learning (FL) applications. Very few previous studies have tried to tackle these constraints in FL at the same time. In this paper, we propose a new framework named Federated Adversarial Decoupled Learning (FADE) to enable AT on resource-constrained edge devices in FL. FADE reduces the computation and memory usage by applying Decoupled Greedy Learning (DGL) to federated adversarial training such that each client only needs to perform AT on a small module of the entire model in each communication round. In addition, we improve vanilla DGL by adding an auxiliary weight decay to alleviate objective inconsistency and achieve better performance. FADE offers a theoretical guarantee for the adversarial robustness and convergence. The experimental results also show that FADE can significantly reduce the computing resources consumed by AT while maintaining almost the same accuracy and robustness as fully joint training.
READ FULL TEXT