Fair integer programming under dichotomous preferences

06/23/2023
by   Tom Demeulemeester, et al.
0

One cannot make truly fair decisions using integer linear programs unless one controls the selection probabilities of the (possibly many) optimal solutions. For this purpose, we propose a unified framework when binary decision variables represent agents with dichotomous preferences, who only care about whether they are selected in the final solution. We develop several general-purpose algorithms to fairly select optimal solutions, for example, by maximizing the Nash product or the minimum selection probability, or by using a random ordering of the agents as a selection criterion (Random Serial Dictatorship). As such, we embed the black-box procedure of solving an integer linear program into a framework that is explainable from start to finish. Moreover, we study the axiomatic properties of the proposed methods by embedding our framework into the rich literature of cooperative bargaining and probabilistic social choice. Lastly, we evaluate the proposed methods on a specific application, namely kidney exchange. We find that while the methods maximizing the Nash product or the minimum selection probability outperform the other methods on the evaluated welfare criteria, methods such as Random Serial Dictatorship perform reasonably well in computation times that are similar to those of finding a single optimal solution.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset