Fair Range k-center
We study the problem of fairness in k-centers clustering on data with disjoint demographic groups. Specifically, this work proposes a variant of fairness which restricts each group's number of centers with both a lower bound (minority-protection) and an upper bound (restricted-domination), and provides both an offline and one-pass streaming algorithm for the problem. In the special case where the lower bound and the upper bound is the same, our offline algorithm preserves the same time complexity and approximation factor with the previous state-of-the-art. Furthermore, our one-pass streaming algorithm improves on approximation factor, running time and space complexity in this special case compared to previous works. Specifically, the approximation factor of our algorithm is 13 compared to the previous 17-approximation algorithm, and the previous algorithms' time complexities have dependence on the metric space's aspect ratio, which can be arbitrarily large, whereas our algorithm's running time does not depend on the aspect ratio.
READ FULL TEXT