Fair Sparse Regression with Clustering: An Invex Relaxation for a Combinatorial Problem

02/19/2021
by   Adarsh Barik, et al.
0

In this paper, we study the problem of fair sparse regression on a biased dataset where bias depends upon a hidden binary attribute. The presence of a hidden attribute adds an extra layer of complexity to the problem by combining sparse regression and clustering with unknown binary labels. The corresponding optimization problem is combinatorial but we propose a novel relaxation of it as an invex optimization problem. To the best of our knowledge, this is the first invex relaxation for a combinatorial problem. We show that the inclusion of the debiasing/fairness constraint in our model has no adverse effect on the performance. Rather, it enables the recovery of the hidden attribute. The support of our recovered regression parameter vector matches exactly with the true parameter vector. Moreover, we simultaneously solve the clustering problem by recovering the exact value of the hidden attribute for each sample. Our method uses carefully constructed primal dual witnesses to solve the combinatorial problem. We provide theoretical guarantees which hold as long as the number of samples is polynomial in terms of the dimension of the regression parameter vector.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset