Farkas certificates and minimal witnesses for probabilistic reachability constraints

10/23/2019
by   Florian Funke, et al.
0

This paper introduces Farkas certificates for lower and upper bounds on minimal and maximal reachability probabilities in Markov decision processes (MDP), which we derive using an MDP-variant of Farkas' Lemma. The set of all such certificates is shown to form a polytope whose points correspond to witnessing subsystems of the model and the property. This allows translating the problem of finding minimal witnesses to the problem of finding vertices with a maximal number of zeros. While computing such vertices is computationally hard in general, we derive new heuristics from our formulations that exhibit competitive performance compared to state-of-the-art techniques and apply to more situations. As an argument that asymptotically better algorithms cannot be hoped for, we show that the decision version of finding minimal witnesses is NP-complete even for acyclic Markov chains.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset