Fast Alternating Linearization Methods for Minimizing the Sum of Two Convex Functions

12/23/2009
by   Donald Goldfarb, et al.
0

We present in this paper first-order alternating linearization algorithms based on an alternating direction augmented Lagrangian approach for minimizing the sum of two convex functions. Our basic methods require at most O(1/ϵ) iterations to obtain an ϵ-optimal solution, while our accelerated (i.e., fast) versions of them require at most O(1/√(ϵ)) iterations, with little change in the computational effort required at each iteration. For both types of methods, we present one algorithm that requires both functions to be smooth with Lipschitz continuous gradients and one algorithm that needs only one of the functions to be so. Algorithms in this paper are Gauss-Seidel type methods, in contrast to the ones proposed by Goldfarb and Ma in [21] where the algorithms are Jacobi type methods. Numerical results are reported to support our theoretical conclusions and demonstrate the practical potential of our algorithms.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset