Fast convergence rates of deep neural networks for classification
We derive the fast convergence rates of a deep neural network (DNN) classifier with the rectified linear unit (ReLU) activation function learned using the hinge loss. We consider three cases for a true model: (1) a smooth decision boundary, (2) smooth conditional class probability, and (3) the margin condition (i.e., the probability of inputs near the decision boundary is small). We show that the DNN classifier learned using the hinge loss achieves fast rate convergences for all three cases provided that the architecture (i.e., the number of layers, number of nodes and sparsity). is carefully selected. An important implication is that DNN architectures are very flexible for use in various cases without much modification. In addition, we consider a DNN classifier learned by minimizing the cross-entropy, and show that the DNN classifier achieves a fast convergence rate under the condition that the conditional class probabilities of most data are sufficiently close to either 1 or zero. This assumption is not unusual for image recognition because human beings are extremely good at recognizing most images. To confirm our theoretical explanation, we present the results of a small numerical study conducted to compare the hinge loss and cross-entropy.
READ FULL TEXT