Fast mass lumped multiscale wave propagation modelling

04/16/2021
by   Sjoerd Geevers, et al.
0

In this paper, we investigate the use of a mass lumped fully explicit time stepping scheme for the discretisation of the wave equation with underlying material parameters that vary at arbitrarily fine scales. We combine the leapfrog scheme for the temporal discretisation with the multiscale technique known as Localized Orthogonal Decomposition for the spatial discretisation. To speed up the method and to make it fully explicit, a special mass lumping approach is introduced that relies on an appropriate interpolation operator. This operator is also employed in the construction of the Localized Orthogonal Decomposition and is a key feature of the approach. We prove that the method converges with second order in the energy norm, with a leading constant that does not depend on the scales at which the material parameters vary. We also illustrate the performance of the mass lumped method in a set of numerical experiments.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset