Fast Thresholded SC-Flip Decoding of Polar Codes

07/30/2020
by   Furkan Ercan, et al.
0

SC-Flip (SCF) decoding algorithm shares the attention with the common polar code decoding approaches due to its low-complexity and improved error-correction performance. However, the inefficient criterion for locating the correct bit-flipping position in SCF decoding limits its improvements. Due to its improved bit-flipping criterion, Thresholded SCF (TSCF) decoding algorithm exhibits a superior error-correction performance and lower computational complexity than SCF decoding. However, the parameters of TSCF decoding depend on multiple channel and code parameters, and are obtained via Monte-Carlo simulations. Our main goal is to realize TSCF decoding as a practical polar decoder implementation. To this end, we first realize an approximated threshold value that is independent of the code parameters and precomputations. The proposed approximation has negligible error-correction performance degradation on the TSCF decoding. Then, we validate an alternative approach for forming a critical set that does not require precomputations, which also paves the way to the implementation of the Fast-TSCF decoder. Compared to the existing fast SCF implementations, the proposed Fast-TSCF decoder has 0.24 to 0.41 dB performance gain at frame error rate of 10^-3, without any extra cost. Compared to the TSCF decoding, Fast-TSCF does not depend on precomputations and requires 87% fewer decoding steps. Finally, implementation results in TSMC 65nm CMOS technology show that the Fast-TSCF decoder is 20% and 82% more area-efficient than the state-of-the-art fast SCF and fast SC-List decoder architectures, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset