Fast Traffic Engineering by Gradient Descent with Learned Differentiable Routing
Emerging applications such as the metaverse, telesurgery or cloud computing require increasingly complex operational demands on networks (e.g., ultra-reliable low latency). Likewise, the ever-faster traffic dynamics will demand network control mechanisms that can operate at short timescales (e.g., sub-minute). In this context, Traffic Engineering (TE) is a key component to efficiently control network traffic according to some performance goals (e.g., minimize network congestion). This paper presents Routing By Backprop (RBB), a novel TE method based on Graph Neural Networks (GNN) and differentiable programming. Thanks to its internal GNN model, RBB builds an end-to-end differentiable function of the target TE problem (MinMaxLoad). This enables fast TE optimization via gradient descent. In our evaluation, we show the potential of RBB to optimize OSPF-based routing (≈25% of improvement with respect to default OSPF configurations). Moreover, we test the potential of RBB as an initializer of computationally-intensive TE solvers. The experimental results show promising prospects for accelerating this type of solvers and achieving efficient online TE optimization.
READ FULL TEXT