FastFusionNet: New State-of-the-Art for DAWNBench SQuAD

02/28/2019
by   Felix Wu, et al.
0

In this technical report, we introduce FastFusionNet, an efficient variant of FusionNet [12]. FusionNet is a high performing reading comprehension architecture, which was designed primarily for maximum retrieval accuracy with less regard towards computational requirements. For FastFusionNets we remove the expensive CoVe layers [21] and substitute the BiLSTMs with far more efficient SRU layers [19]. The resulting architecture obtains state-of-the-art results on DAWNBench [5] while achieving the lowest training and inference time on SQuAD [25] to-date. The code is available at https://github.com/felixgwu/FastFusionNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset