FedCD: Improving Performance in non-IID Federated Learning

06/17/2020
by   Kavya Kopparapu, et al.
0

Federated learning has been widely applied to enable decentralized devices, which each have their own local data, to learn a shared model. However, learning from real-world data can be challenging, as it is rarely identically and independently distributed (IID) across edge devices (a key assumption for current high-performing and low-bandwidth algorithms). We present a novel approach, FedCD, which clones and deletes models to dynamically group devices with similar data. Experiments on the CIFAR-10 dataset show that FedCD achieves higher accuracy and faster convergence compared to a FedAvg baseline on non-IID data while incurring minimal computation, communication, and storage overheads.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro