Federated Meta-Learning for Recommendation

02/22/2018
by   Fei Chen, et al.
0

Recommender systems have been widely studied from the machine learning perspective, where it is crucial to share information among users while preserving user privacy. In this work, we present a federated meta-learning framework for recommendation in which user information is shared at the level of algorithm, instead of model or data adopted in previous approaches. In this framework, user-specific recommendation models are locally trained by a shared parameterized algorithm, which preserves user privacy and at the same time utilizes information from other users to help model training. Interestingly, the model thus trained exhibits a high capacity at a small scale, which is energy- and communication-efficient. Experimental results show that recommendation models trained by meta-learning algorithms in the proposed framework outperform the state-of-the-art in accuracy and scale. For example, on a production dataset, a shared model under Google Federated Learning (McMahan et al., 2017) with 900,000 parameters has prediction accuracy 76.72 while a shared algorithm under federated meta-learning with less than 30,000 parameters achieves accuracy of 86.23

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset