FedSpectral+: Spectral Clustering using Federated Learning
Clustering in graphs has been a well-known research problem, particularly because most Internet and social network data is in the form of graphs. Organizations widely use spectral clustering algorithms to find clustering in graph datasets. However, applying spectral clustering to a large dataset is challenging due to computational overhead. While the distributed spectral clustering algorithm exists, they face the problem of data privacy and increased communication costs between the clients. Thus, in this paper, we propose a spectral clustering algorithm using federated learning (FL) to overcome these issues. FL is a privacy-protecting algorithm that accumulates model parameters from each local learner rather than collecting users' raw data, thus providing both scalability and data privacy. We developed two approaches: FedSpectral and FedSpectral+. FedSpectral is a baseline approach that uses local spectral clustering labels to aggregate the global spectral clustering by creating a similarity graph. FedSpectral+, a state-of-the-art approach, uses the power iteration method to learn the global spectral embedding by incorporating the entire graph data without access to the raw information distributed among the clients. We further designed our own similarity metric to check the clustering quality of the distributed approach to that of the original/non-FL clustering. The proposed approach FedSpectral+ obtained a similarity of 98.85 clustering on the ego-Facebook and email-Eu-core dataset.
READ FULL TEXT