Feudal Graph Reinforcement Learning

04/11/2023
by   Tommaso Marzi, et al.
1

We focus on learning composable policies to control a variety of physical agents with possibly different structures. Among state-of-the-art methods, prominent approaches exploit graph-based representations and weight-sharing modular policies based on the message-passing framework. However, as shown by recent literature, message passing can create bottlenecks in information propagation and hinder global coordination. This drawback can become even more problematic in tasks where high-level planning is crucial. In fact, in similar scenarios, each modular policy - e.g., controlling a joint of a robot - would request to coordinate not only for basic locomotion but also achieve high-level goals, such as navigating a maze. A classical solution to avoid similar pitfalls is to resort to hierarchical decision-making. In this work, we adopt the Feudal Reinforcement Learning paradigm to develop agents where control actions are the outcome of a hierarchical (pyramidal) message-passing process. In the proposed Feudal Graph Reinforcement Learning (FGRL) framework, high-level decisions at the top level of the hierarchy are propagated through a layered graph representing a hierarchy of policies. Lower layers mimic the morphology of the physical system and upper layers can capture more abstract sub-modules. The purpose of this preliminary work is to formalize the framework and provide proof-of-concept experiments on benchmark environments (MuJoCo locomotion tasks). Empirical evaluation shows promising results on both standard benchmarks and zero-shot transfer learning settings.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset