Few-Shot Object Detection with Attention-RPN and Multi-Relation Detector
Conventional methods for object detection usually requires substantial amount of training data and to prepare such high quality training data is labor intensive. In this paper, we propose few-shot object detection which aims to detect objects of unseen class with a few training examples. Central to our method is the Attention-RPN and the multi-relation module which fully exploit the similarity between the few shot training examples and the test set to detect novel objects while suppressing the false detection in background. To train our network, we have prepared a new dataset which contains 1000 categories of varies objects with high quality annotations. To the best of our knowledge, this is also the first dataset specifically designed for few shot object detection. Once our network is trained, we can apply object detection for unseen classes without further training or fine tuning. This is also the major advantage of few shot object detection. Our method is general, and has a wide range of applications. We demonstrate the effectiveness of our method quantitatively and qualitatively on different datasets. The dataset link is: https://github.com/fanq15/Few-Shot-Object-Detection-Dataset.
READ FULL TEXT