Few-Shot Semantic Segmentation Augmented with Image-Level Weak Annotations

07/03/2020
by   Shuo Lei, et al.
0

Despite the great progress made by deep neural networks in the semantic segmentation task, traditional neural network-based methods typically suffer from a shortage of large amounts of pixel-level annotations. Recent progress in few-shot semantic segmentation tackles the issue by utilizing only a few pixel-level annotated examples. However, these few-shot approaches cannot easily be applied to utilize image-level weak annotations, which can easily be obtained and considerably improve performance in the semantic segmentation task. In this paper, we advance the few-shot segmentation paradigm towards a scenario where image-level annotations are available to help the training process of a few pixel-level annotations. Specifically, we propose a new framework to learn the class prototype representation in the metric space by integrating image-level annotations. Furthermore, a soft masked average pooling strategy is designed to handle distractions in image-level annotations. Extensive empirical results on PASCAL-5i show that our method can achieve 5.1 and 8.2 scribble annotations, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset