FFDNet-Based Channel Estimation for Massive MIMO Visible Light Communication Systems

11/18/2019
by   Zhipeng Gao, et al.
0

Channel estimation is of crucial importance in massive multiple-input multiple-output (m-MIMO) visible light communication (VLC) systems. In order to tackle this problem, a fast and flexible denoising convolutional neural network (FFDNet)-based channel estimation scheme for m-MIMO VLC systems was proposed. The channel matrix of the m-MIMO VLC channel is identified as a two-dimensional natural image since the channel has the characteristic of sparsity. A deep learning-enabled image denoising network FFDNet is exploited to learn from a large number of training data and to estimate the m-MIMO VLC channel. Simulation results demonstrate that our proposed channel estimation based on the FFDNet significantly outperforms the benchmark scheme based on minimum mean square error.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset