FFT-based Homogenization at Finite Strains using Composite Boxels (ComBo)
Computational homogenization is the gold standard for concurrent multi-scale simulations (e.g., FE2) in scale-bridging applications. Experimental and synthetic material microstructures are often represented by 3D image data. The computational complexity of simulations operating on such three-dimensional high-resolution voxel data comprising billions of unknowns induces the need for algorithmically and numerically efficient solvers. The inability of voxelized 3D geometries to capture smooth material interfaces accurately, along with the necessity for complexity reduction, motivates a special local coarse-graining technique called composite voxels [Kabel,M. et al. (2015)]. Composite voxels condense multiple fine-scale voxels into a single voxel obeying a theory-inspired constitutive model by employing laminate theory. Composite voxels enhance local field quality at a modest computational cost. Our contribution comprises the generalization towards composite boxels (ComBo) that are nonequiaxed, a feature that can pay off for materials with a preferred direction. A novel image-based normal detection algorithm is devised which improves the accuracy by around 30% against the orientation cf. [Kabel,M. et al. (2015) ]. Further, the use of ComBo for finite strain simulations is studied in detail. An efficient implementation is proposed, and an essential back-projection algorithm preventing physically inadmissible states is developed, which improves robustness. Various examples show the efficiency of ComBo and the proposed algorithmic enhancements for nonlinear mechanical problems. The general usability is emphasized by examining and comparing the performance of myriad Fast Fourier Transform (FFT) based solvers including a detailed description of the new Doubly-Fine Material Grid (DFMG). All of the employed schemes benefit from the ComBo discretization.
READ FULL TEXT