Find the Conversation Killers: a Predictive Study of Thread-ending Posts
How to improve the quality of conversations in online communities has attracted considerable attention recently. Having engaged, urbane, and reactive online conversations has a critical effect on the social life of Internet users. In this study, we are particularly interested in identifying a post in a multi-party conversation that is unlikely to be further replied to, which therefore kills that thread of the conversation. For this purpose, we propose a deep learning model called the ConverNet. ConverNet is attractive due to its capability of modeling the internal structure of a long conversation and its appropriate encoding of the contextual information of the conversation, through effective integration of attention mechanisms. Empirical experiments on real-world datasets demonstrate the effectiveness of the proposal model. For the widely concerned topic, our analysis also offers implications for improving the quality and user experience of online conversations.
READ FULL TEXT