Finding Robust Solutions to Stable Marriage

05/24/2017
by   Begum Genc, et al.
0

We study the notion of robustness in stable matching problems. We first define robustness by introducing (a,b)-supermatches. An (a,b)-supermatch is a stable matching in which if a pairs break up it is possible to find another stable matching by changing the partners of those a pairs and at most b other pairs. In this context, we define the most robust stable matching as a (1,b)-supermatch where b is minimum. We show that checking whether a given stable matching is a (1,b)-supermatch can be done in polynomial time. Next, we use this procedure to design a constraint programming model, a local search approach, and a genetic algorithm to find the most robust stable matching. Our empirical evaluation on large instances show that local search outperforms the other approaches.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset