Flood Detection via Twitter Streams using Textual and Visual Features

11/30/2020
by   Firoj Alam, et al.
0

The paper presents our proposed solutions for the MediaEval 2020 Flood-Related Multimedia Task, which aims to analyze and detect flooding events in multimedia content shared over Twitter. In total, we proposed four different solutions including a multi-modal solution combining textual and visual information for the mandatory run, and three single modal image and text-based solutions as optional runs. In the multimodal method, we rely on a supervised multimodal bitransformer model that combines textual and visual features in an early fusion, achieving a micro F1-score of .859 on the development data set. For the text-based flood events detection, we use a transformer network (i.e., pretrained Italian BERT model) achieving an F1-score of .853. For image-based solutions, we employed multiple deep models, pre-trained on both, the ImageNet and places data sets, individually and combined in an early fusion achieving F1-scores of .816 and .805 on the development set, respectively.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro