Flow Smoothing and Denoising: Graph Signal Processing in the Edge-Space
This paper focuses on devising graph signal processing tools for the treatment of data defined on the edges of a graph. We first show that conventional tools from graph signal processing may not be suitable for the analysis of such signals. More specifically, we discuss how the underlying notion of a `smooth signal' inherited from (the typically considered variants of) the graph Laplacian are not suitable when dealing with edge signals that encode a notion of flow. To overcome this limitation we introduce a class of filters based on the Edge-Laplacian, a special case of the Hodge-Laplacian for simplicial complexes of order one. We demonstrate how this Edge-Laplacian leads to low-pass filters that enforce (approximate) flow-conservation in the processed signals. Moreover, we show how these new filters can be combined with more classical Laplacian-based processing methods on the line-graph. Finally, we illustrate the developed tools by denoising synthetic traffic flows on the London street network.
READ FULL TEXT