Forecasting asylum-related migration flows with machine learning and data at scale
The effects of the so-called "refugee crisis" of 2015-16 continue to dominate the political agenda in Europe. Migration flows were sudden and unexpected, leaving governments unprepared and exposing significant shortcomings in the field of migration forecasting. Migration is a complex system typified by episodic variation, underpinned by causal factors that are interacting, highly context dependent and short-lived. Correspondingly, migration monitoring relies on scattered data, while approaches to forecasting focus on specific migration flows and often have inconsistent results that are difficult to generalise at the regional or global levels. Here we show that adaptive machine learning algorithms that integrate official statistics and non-traditional data sources at scale can effectively forecast asylum-related migration flows. We focus on asylum applications lodged in countries of the European Union (EU) by nationals of all countries of origin worldwide; the same approach can be applied in any context provided adequate migration or asylum data are available. We exploit three tiers of data - geolocated events and internet searches in countries of origin, detections of irregular crossings at the EU border, and asylum recognition rates in countries of destination - to effectively forecast individual asylum-migration flows up to four weeks ahead with high accuracy. Uniquely, our approach a) monitors potential drivers of migration in countries of origin to detect changes early onset; b) models individual country-to-country migration flows separately and on moving time windows; c) estimates the effects of individual drivers, including lagged effects; d) provides forecasts of asylum applications up to four weeks ahead; e) assesses how patterns of drivers shift over time to describe the functioning and change of migration systems.
READ FULL TEXT