Formalized functional analysis with semilinear maps

02/10/2022
by   Frédéric Dupuis, et al.
0

Semilinear maps are a generalization of linear maps between vector spaces where we allow the scalar action to be twisted by a ring homomorphism such as complex conjugation. In particular, this generalization unifies the concepts of linear and conjugate-linear maps. We implement this generalization in Lean's library, along with a number of important results in functional analysis which previously were impossible to formalize properly. Specifically, we prove the Fréchet–Riesz representation theorem and the spectral theorem for compact self-adjoint operators generically over real and complex Hilbert spaces. We also show that semilinear maps have applications beyond functional analysis by formalizing the one-dimensional case of a theorem of Dieudonné and Manin that classifies the isocrystals over an algebraically closed field with positive characteristic.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset