Foundations of Comparison-Based Hierarchical Clustering
We address the classical problem of hierarchical clustering, but in a framework where one does not have access to a representation of the objects or their pairwise similarities. Instead we assume that only a set of comparisons between objects are available in terms of statements of the form "objects i and j are more similar than objects k and l". Such a scenario is commonly encountered in crowdsourcing applications. The focus of this work is to develop comparison-based hierarchical clustering algorithms that do not rely on the principles of ordinal embedding. We propose comparison-based variants of average linkage clustering. We provide statistical guarantees for the proposed methods under a planted partition model for hierarchical clustering. We also empirically demonstrate the performance of the proposed methods on several datasets.
READ FULL TEXT