FPCC-Net: Fast Point Cloud Clustering for Instance Segmentation

12/29/2020
by   Yajun Xu, et al.
11

Instance segmentation is an important pre-processing task in numerous real-world applications, such as robotics, autonomous vehicles, and human-computer interaction. However, there has been little research on 3D point cloud instance segmentation of bin-picking scenes in which multiple objects of the same class are stacked together. Compared with the rapid development of deep learning for two-dimensional (2D) image tasks, deep learning-based 3D point cloud segmentation still has a lot of room for development. In such a situation, distinguishing a large number of occluded objects of the same class is a highly challenging problem. In a usual bin-picking scene, an object model is known and the number of object type is one. Thus, the semantic information can be ignored; instead, the focus is put on the segmentation of instances. Based on this task requirement, we propose a network (FPCC-Net) that infers feature centers of each instance and then clusters the remaining points to the closest feature center in feature embedding space. FPCC-Net includes two subnets, one for inferring the feature centers for clustering and the other for describing features of each point. The proposed method is compared with existing 3D point cloud and 2D segmentation methods in some bin-picking scenes. It is shown that FPCC-Net improves average precision (AP) by about 40% than SGPN and can process about 60,000 points in about 0.8 [s].

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset