Free material optimization of thermal conductivity tensors with asymmetric components
Free Material Optimization (FMO), a branch of topology optimization, in which the design variables are the full constitutive tensors, can provide the most general form of the design problems. Considering the microstructure composed of isotropic materials, the constitutive tensors are yet positive definite and symmetric. On the other hand, it has been reported that the symmetry of this constitutive tensor can be broken in appearance by considering other physical phenomena. In the present study, we focus on the thermal Hall effect, which is explained as the phenomena that induces the temperature gradient orthogonal to a given temperature gradient across a solid when a magnetic field is applied to the solid. This effect makes the thermal conductivity tensor asymmetric and justifies extending the space of the constitutive tensors to be an asymmetric domain. We propose the FMO for asymmetric constitutive tensors, parameterizing the design space so that the physically available property could be naturally satisfied. Several numerical experiments are provided to show the validity and the utility of the proposed method.
READ FULL TEXT