Free Surface Flows in Electrohydrodynamics with a Constant Vorticity Distribution

11/04/2019
by   Matthew Hunt, et al.
0

In 1895, Korteweg and de Vries (KdV), derived their celebrated equation describing the motion of waves of long wavelength in shallow water. In doing so they made a number of quite reasonable assumptions, incompressibility of the water and irrotational fluid. The resulting equation, the celebrated KdV equation, has been shown to be a very reasonable description of real water waves. However there are other phenomena which have an impact on the shape of the wave, that of vorticity and viscosity. This paper examines how a constant vorticity affects the shape of waves in electrohydrodynamics. For constant vorticity, the vertical component of the velocity obeys a Laplace equation and also has the usual lower boundary condition. In making the vertical component of the velocity take central stage, the Burns condition can be thus bypassed.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset