From images in the wild to video-informed image classification
Image classifiers work effectively when applied on structured images, yet they often fail when applied on images with very high visual complexity. This paper describes experiments applying state-of-the-art object classifiers toward a unique set of images in the wild with high visual complexity collected on the island of Bali. The text describes differences between actual images in the wild and images from Imagenet, and then discusses a novel approach combining informational cues particular to video with an ensemble of imperfect classifiers in order to improve classification results on video sourced images of plants in the wild.
READ FULL TEXT