From Model-driven to Data-driven: A Survey on Active Deep Learning
Which samples should be labelled in a large data set is one of the most important problems for trainingof deep learning. So far, a variety of active sample selection strategies related to deep learning havebeen proposed in many literatures. We defined them as Active Deep Learning (ADL) only if theirpredictor is deep model, where the basic learner is called as predictor and the labeling schemes iscalled selector. In this survey, three fundamental factors in selector designation were summarized. Wecategory ADL into model-driven ADL and data-driven ADL, by whether its selector is model-drivenor data-driven. The different characteristics of the two major type of ADL were addressed in indetail respectively. Furthermore, different sub-classes of data-driven and model-driven ADL are alsosummarized and discussed emphatically. The advantages and disadvantages between data-driven ADLand model-driven ADL are thoroughly analyzed. We pointed out that, with the development of deeplearning, the selector in ADL also is experiencing the stage from model-driven to data-driven. Finally,we make discussion on ADL about its uncertainty, explanatory, foundations of cognitive science etc.and survey on the trend of ADL from model-driven to data-driven.
READ FULL TEXT