Fully distribution-free center-outward rank tests for multiple-output regression and MANOVA

07/30/2020
by   Marc Hallin, et al.
0

Extending rank-based inference to a multivariate setting such as multiple-output regression or MANOVA with unspecified d-dimensional error density has remained an open problem for more than half a century. None of the many solutions proposed so far is enjoying the combination of distribution-freeness and efficiency that makes rank-based inference a successful tool in the univariate setting. A concept of center-outward multivariate ranks and signs based on measure transportation ideas has been introduced recently. Center-outward ranks and signs are not only distribution-free but achieve in dimension d > 1 the (essential) maximal ancillarity property of traditional univariate ranks, hence carry all the "distribution-free information" available in the sample. We derive here the Hájek representation and asymptotic normality results required in the construction of center-outward rank tests for multiple-output regression and MANOVA. When based on appropriate spherical scores, these fully distribution-free tests achieve parametric efficiency in the corresponding models.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset
Success!
Error Icon An error occurred

Sign in with Google

×

Use your Google Account to sign in to DeepAI

×

Consider DeepAI Pro