Fuzzy Mutation Embedded Hybrids of Gravitational Search and Particle Swarm Optimization Methods for Engineering Design Problems

05/10/2020
by   Devroop Kar, et al.
3

Gravitational Search Algorithm (GSA) and Particle Swarm Optimization (PSO) are nature-inspired, swarm-based optimization algorithms respectively. Though they have been widely used for single-objective optimization since their inception, they suffer from premature convergence. Even though the hybrids of GSA and PSO perform much better, the problem remains. Hence, to solve this issue we have proposed a fuzzy mutation model for two hybrid versions of PSO and GSA - Gravitational Particle Swarm (GPS) and PSOGSA. The developed algorithms are called Mutation based GPS (MGPS) and Mutation based PSOGSA (MPSOGSA). The mutation operator is based on a fuzzy model where the probability of mutation has been calculated based on the closeness of particle to population centroid and improvement in the particle value. We have evaluated these two new algorithms on 23 benchmark functions of three categories (unimodal, multi-modal and multi-modal with fixed dimension). The experimental outcome shows that our proposed model outperforms their corresponding ancestors, MGPS outperforms GPS 13 out of 23 times (56.52 outperforms PSOGSA 17 times out of 23 (73.91 results against those of recent optimization algorithms such as Sine Cosine Algorithm (SCA), Opposition-Based SCA, and Volleyball Premier League Algorithm (VPL). In addition, we have applied our proposed algorithms on some classic engineering design problems and the outcomes are satisfactory. The related codes of the proposed algorithms can be found in this link: Fuzzy-Mutation-Embedded-Hybrids-of-GSA-and-PSO.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset