GANs as Gradient Flows that Converge
This paper approaches the unsupervised learning problem by gradient descent in the space of probability density functions. Our main result shows that along the gradient flow induced by a distribution-dependent ordinary differential equation (ODE), the unknown data distribution emerges as the long-time limit of this flow of densities. That is, one can uncover the data distribution by simulating the distribution-dependent ODE. Intriguingly, we find that the simulation of the ODE is equivalent to the training of generative adversarial networks (GANs). The GAN framework, by definition a non-cooperative game between a generator and a discriminator, can therefore be viewed alternatively as a cooperative game between a navigator and a calibrator (in collaboration to simulate the ODE). At the theoretic level, this new perspective simplifies the analysis of GANs and gives new insight into their performance. To construct a solution to the distribution-dependent ODE, we first show that the associated nonlinear Fokker-Planck equation has a unique weak solution, using the Crandall-Liggett theorem for differential equations in Banach spaces. From this solution to the Fokker-Planck equation, we construct a unique solution to the ODE, relying on Trevisan's superposition principle. The convergence of the induced gradient flow to the data distribution is obtained by analyzing the Fokker-Planck equation.
READ FULL TEXT