Gated Texture CNN for Efficient and Configurable Image Denoising
Convolutional neural network (CNN)-based image denoising methods typically estimate the noise component contained in a noisy input image and restore a clean image by subtracting the estimated noise from the input. However, previous denoising methods tend to remove high-frequency information (e.g., textures) from the input. It caused by intermediate feature maps of CNN contains texture information. A straightforward approach to this problem is stacking numerous layers, which leads to a high computational cost. To achieve high performance and computational efficiency, we propose a gated texture CNN (GTCNN), which is designed to carefully exclude the texture information from each intermediate feature map of the CNN by incorporating gating mechanisms. Our GTCNN achieves state-of-the-art performance with 4.8 times fewer parameters than previous state-of-the-art methods. Furthermore, the GTCNN allows us to interactively control the texture strength in the output image without any additional modules, training, or computational costs.
READ FULL TEXT