Gender Classification and Bias Mitigation in Facial Images
Gender classification algorithms have important applications in many domains today such as demographic research, law enforcement, as well as human-computer interaction. Recent research showed that algorithms trained on biased benchmark databases could result in algorithmic bias. However, to date, little research has been carried out on gender classification algorithms' bias towards gender minorities subgroups, such as the LGBTQ and the non-binary population, who have distinct characteristics in gender expression. In this paper, we began by conducting surveys on existing benchmark databases for facial recognition and gender classification tasks. We discovered that the current benchmark databases lack representation of gender minority subgroups. We worked on extending the current binary gender classifier to include a non-binary gender class. We did that by assembling two new facial image databases: 1) a racially balanced inclusive database with a subset of LGBTQ population 2) an inclusive-gender database that consists of people with non-binary gender. We worked to increase classification accuracy and mitigate algorithmic biases on our baseline model trained on the augmented benchmark database. Our ensemble model has achieved an overall accuracy score of 90.39 binary gender classifier trained on Adience. While this is an initial attempt towards mitigating bias in gender classification, more work is needed in modeling gender as a continuum by assembling more inclusive databases.
READ FULL TEXT