General adaptive rational interpolation with maximum order close to discontinuities
Adaptive rational interpolation has been designed in the context of image processing as a new nonlinear technique that avoids the Gibbs phenomenon when we approximate a discontinuous function. In this work, we present a generalization to the method giving explicit expressions for all the weights for any order of the algorithm. It has a similar behavior to weighted essentially non oscillatory (WENO) technique, however because of the design of the weights in this case is more simple, we propose a new way to construct them obtaining the maximum order near the discontinuities. Some experiments are performed to demonstrate our results and to compare them with standard methods.
READ FULL TEXT