Generalized Capsule Networks with Trainable Routing Procedure

08/27/2018
by   Zhenhua Chen, et al.
0

CapsNet (Capsule Network) was first proposed by capsule and later another version of CapsNet was proposed by emrouting. CapsNet has been proved effective in modeling spatial features with much fewer parameters. However, the routing procedures in both papers are not well incorporated into the whole training process. The optimal number of routing procedure is misery which has to be found manually. To overcome this disadvantages of current routing procedures in CapsNet, we embed the routing procedure into the optimization procedure with all other parameters in neural networks, namely, make coupling coefficients in the routing procedure become completely trainable. We call it Generalized CapsNet (G-CapsNet). We implement both "full-connected" version of G-CapsNet and "convolutional" version of G-CapsNet. G-CapsNet achieves a similar performance in the dataset MNIST as in the original papers. We also test two capsule packing method (cross feature maps or with feature maps) from previous convolutional layers and see no evident difference. Besides, we also explored possibility of stacking multiple capsule layers. The code is shared on https://github.com/chenzhenhua986/CAFFE-CapsNetCAFFE-CapsNet.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset