Generalized Kernel-Based Dynamic Mode Decomposition
Reduced modeling in high-dimensional reproducing kernel Hilbert spaces offers the opportunity to approximate efficiently non-linear dynamics. In this work, we devise an algorithm based on low rank constraint optimization and kernel-based computation that generalizes a recent approach called "kernel-based dynamic mode decomposition". This new algorithm is characterized by a gain in approximation accuracy, as evidenced by numerical simulations, and in computational complexity.
READ FULL TEXT