Generating Initial Conditions for Ensemble Data Assimilation of Large-Eddy Simulations with Latent Diffusion Models

03/01/2023
by   Alex Rybchuk, et al.
0

In order to accurately reconstruct the time history of the atmospheric state, ensemble-based data assimilation algorithms need to be initialized appropriately. At present, there is no standard approach to initializing large-eddy simulation codes for microscale data assimilation. Here, given synthetic observations, we generate ensembles of plausible initial conditions using a latent diffusion model. We modify the original, two-dimensional latent diffusion model code to work on three-dimensional turbulent fields. The algorithm produces realistic and diverse samples that successfully run when inserted into a large-eddy simulation code. The samples have physically plausible turbulent structures on large and moderate spatial scales in the context of our simulations. The generated ensembles show a lower spread in the vicinity of observations while having higher variability further from the observations, matching expected behavior. Ensembles demonstrate near-zero bias relative to ground truth in the vicinity of observations, but rank histogram analysis suggests that ensembles have too little member-to-member variability when compared to an ideal ensemble. Given the success of the latent diffusion model, the generated ensembles will be tested in their ability to recreate a time history of the atmosphere when coupled to an ensemble-based data assimilation algorithm in upcoming work. We find that diffusion models show promise and potential for other applications within the geosciences.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset