Generative Language-Grounded Policy in Vision-and-Language Navigation with Bayes' Rule

09/16/2020
by   Shuhei Kurita, et al.
0

Vision-and-language navigation (VLN) is a task in which an agent is embodied in a realistic 3D environment and follows an instruction to reach the goal node. While most of the previous studies have built and investigated a discriminative approach, we notice that there are in fact two possible approaches to building such a VLN agent: discriminative and generative. In this paper, we design and investigate a generative language-grounded policy which computes the distribution over all possible instructions given action and the transition history. In experiments, we show that the proposed generative approach outperforms the discriminative approach in the Room-2-Room (R2R) dataset, especially in the unseen environments. We further show that the combination of the generative and discriminative policies achieves close to the state-of-the art results in the R2R dataset, demonstrating that the generative and discriminative policies capture the different aspects of VLN.

READ FULL TEXT

Please sign up or login with your details

Forgot password? Click here to reset