Generic Instance Search and Re-identification from One Example via Attributes and Categories
This paper aims for generic instance search from one example where the instance can be an arbitrary object like shoes, not just near-planar and one-sided instances like buildings and logos. First, we evaluate state-of-the-art instance search methods on this problem. We observe that what works for buildings loses its generality on shoes. Second, we propose to use automatically learned category-specific attributes to address the large appearance variations present in generic instance search. Searching among instances from the same category as the query, the category-specific attributes outperform existing approaches by a large margin on shoes and cars and perform on par with the state-of-the-art on buildings. Third, we treat person re-identification as a special case of generic instance search. On the popular VIPeR dataset, we reach state-of-the-art performance with the same method. Fourth, we extend our method to search objects without restriction to the specifically known category. We show that the combination of category-level information and the category-specific attributes is superior to the alternative method combining category-level information with low-level features such as Fisher vector.
READ FULL TEXT